OPF:FINPFEK Finanční ekonometrie - Informace o předmětu
FINPFEK Finanční ekonometrie
Obchodně podnikatelská fakulta v Karvinézima 2009
- Rozsah
- 1/2/0. 3 kr. Ukončení: z.
- Vyučující
- prof. Ing. Daniel Stavárek, Ph.D. (přednášející)
Ing. Stanislav Matuszek (cvičící) - Garance
- Ing. Stanislav Matuszek
Katedra financí a účetnictví – Obchodně podnikatelská fakulta v Karviné - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Bankovnictví (program OPF, N_HOSPOL)
- Finance (program OPF, N_HOSPOL)
- Cíle předmětu
- Seznámit posluchače s ekonometrickými metodami, modely a nástroji a jejich uplatněním v oblasti ekonomie financí. Koncepce kurzu vychází z návaznosti na povinné předměty ekonomické a finanční teorie, matematiky a statistiky. Výklad je zaměřen na prohloubení a rozvinutí teoretických základů ekonometrie financí tak, aby poskytl potřebnou teoretickou reflexi. Semináře obsahují vysvětlení problematiky aplikace ekonometrických postupů na finance a konkretizují poznatky získané z případových studií.
- Osnova
- 1. Teorie a modely
Finanční teorie a jejich modelové pojetí. Cíle finanční ekonometrie. Specifikace ekonometrického modelu. Jednorozměrné, simultánní a vícerozměrné modely. Ekonomická, statistická a ekonometrická verifikace modelu. Oblasti aplikace ekonometrických modelů ve financích.
2. Finanční časové řady a jejich charakteristiky
Deskriptivní statistiky, normalita, linearita, homoskedasticita a heteroskedasticita, stacionární a nestacionární časové řady (trendová a diferenční stacionarita). Testování stacionarity, jednotkový kořen a testy DF, ADF, PP, KPSS etc.
3. Modely jednorozměrných stacionárních a nestacionárních časových řad
Autokorelační a parciální autokorelační funkce. Proces "bílého šumu" (White Noise), lineární proces a Woldova reprezentace. Autoregrese, řády autoregresních procesů (AR), klouzavé (pohyblivé) průměry (MA), řády procesů MA, smíšený model ARMA. Nestacionární časové řady a "náhodná procházka" (Random Walk Process), integrované procesy, diferencování, model ARIMA. Modely sezónních časových řad (SAR, SMA, SARMA, resp. SARIMA). Frakcionálně integrované procesy (tzv. dlouhá paměť), frakcionální diference, model ARFIMA.
4. Estimace parametrů modelu
Metoda nejmenších čtverců a její uplatnění. Metoda maximální věrohodnosti (podmíněná a nepodmíněná). Nelineární metoda nejmenších čtverců. Vícestupňové metody. Všeobecná metoda momentů.
5. Evaluace a diagnostická kontrola modelu
Koeficient determinace a upravený koeficient determinace. F-statistika, t-statistiky parametrů, kritéria volby modelu (AIC, BIC, SBC). Testy nesystematické složky (ARCH test, Durbin - Watsonův test, test Jarque - Bera etc.).
6. Kauzalita ve finančních časových řadách
Korelační analýza - výhody a nedostatky. Grangerova kauzalita. Analýza "impuls - reakce". Endogenita a exogenita (slabá, silná superexogenita). Multikolinearita a ortogonalita exogenních proměnných. Metody ortogonalizace. Metoda hlavních komponent a faktorová analýza.
7. Modely vícerozměrných časových řad
Vektorový stochastický proces. Vícerozměrný lineární proces. Modely vektorové autoregrese (VAR, VMA, VARMA, VARIMA). Modely se zpožděním typu ARDL. Systémy dynamických simultánních rovnic.
8. Kointegrace a modely typu Error Correction
Trendy a zdánlivá regrese. Definice kointegrovaných procesů. Grangerova věta. Testování kointegrace. Dvojstupňová metoda Engle - Grangera. Testování řádu kointegrace - metoda Johansena. Model Error Correction (EC) a vektorový EC (VEC). Testy restrikcí v kointegraci a testování hypotéz o parametrech modelu.
9. Modely diskrétní volby
Modely binární volby. Modely obecné volby. Modely typu Logit, Probit a Tobit.
10. Panelová regrese
Průřezové časové řady. Statický lineární model. Konstantní a náhodné efekty. Dynamický lineární model. Aplikační možnosti, výhody a nevýhody panelové regrese.
11. Nelinearita finančních časových řad a modely volatility
Testování nelinearity časových řad. Modely proměnlivých režimů (TAR, STAR, SETAR MSW aj.). Modely volatility. ARCH a GARCH modely. Asymetrické modely typu EGARCH a TARCH. Integrované a frakcionálně integrované modely typu IGARCH a FIGARCH etc.
12. Aplikace systémů umělé inteligence v modelech finančních časových řad
Možnosti implementace systémů umělé inteligence ve finanční ekonometrii. Podstata a schémata umělých neuronových sítí (Artificial Neural Network, ANN). Aplikace ANN na nelineární finanční časové řady. Neostré množiny (Fuzzy Setts) a jejich aplikace v teorii portfolia a finančním rozhodování. Evoluční a genetické algoritmy, postupy genetických operátorů (populace, fitness, selekce, rekombinace, mutace). Teorie chao
- 1. Teorie a modely
- Literatura
- povinná literatura
- ARLT, J., ARLTOVÁ, M. Finanční časové řady. 1. vyd. Praha: Grada Publishing, 2003. ISBN 80-247-0330-0. info
- VERBEEK, M. A Guide to Modern Econometrics. Chicester, etc.: John Wiley & Sons, 2000. ISBN 0-471-89982-8. info
- ARLT, J. Moderní metody modelování ekonomických časových řad. 1. vyd. Praha: Grada Publishing, 1999. ISBN 80-7169-539-4. info
- CAMPBELL, JY., LO, AW., MACKINLAY, AC. The Econometrics of Financial Markets. New York: Princeton University Press, 1997. ISBN 0-691-04301-9. info
- doporučená literatura
- MARČEK, D. Neuronové sítě a fuzzy časové řady. Opava: SU Opava, 2002. ISBN 80-7248-157-6. info
- CUTHBERTSON, K., NITZSCHE, D. Financial Engineering. Chicester, etc.: John Wiley & Sons, 2001. ISBN 0-471-49584-0. info
- MADDALA, GS. Introduction to Econometrics. 3rd ed. New York, etc.: John Wiley & Sons, 2001. ISBN 0-471-49728-2. info
- HUŠEK, R. Základy ekonometrie I a II. Praha: FIS VŠE, 1992. ISBN 80-7079-102-0. info
- HUŠEK, R. Základy ekonometrické analýzy II. Speciální postupy a techniky. Praha: VŠE,, 1988. ISBN 80-7079-441-0. info
- Informace učitele
- Povinná účast na seminářích 25 %.
Seminární práce, diskuze, průběžný test, závěrečná písemná zkouška - Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
- Statistika zápisu (zima 2009, nejnovější)
- Permalink: https://is.slu.cz/predmet/opf/zima2009/FINPFEK