MU:MU03039 Diferenciální geometrie II - Informace o předmětu
MU03039 Diferenciální geometrie II
Matematický ústav v Opavěléto 2012
- Rozsah
- 4/2/0. 8 kr. Ukončení: zk.
- Vyučující
- prof. RNDr. Artur Sergyeyev, Ph.D., DSc. (přednášející)
RNDr. Petr Vojčák, Ph.D. (cvičící) - Garance
- prof. RNDr. Artur Sergyeyev, Ph.D., DSc.
Matematický ústav v Opavě - Předpoklady
- MU03038 Diferenciální geometrie I
MU/03038 - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Geometrie (program MU, M1101)
- Geometrie (program MU, N1101)
- Matematická analýza (program MU, M1101)
- Matematická analýza (program MU, N1101)
- Matematická fyzika (program MU, N1101)
- Obecná matematika (program MU, B1101)
- Cíle předmětu
- Diferenciální geometrie je část geometrie, která využívá ke studiu křivek, (hyper)ploch apod. metody diferenciálního počtu. Diferenciální geometrie se při studiu geometrických útvarů zaměřuje na tzv. invariantní vlastnosti, které nezávisí na volbě soustavy souřadnic. Diferenciální geometrie se zabývá především lokálními vlastnostmi geometrických útvarů, tedy vlastností týkajících se dostatečně malých částí těchto útvarů.
- Osnova
- Diferenciální formy -- pokračování (orientovatelnost, integrování na varietách, Stokesova věta a její důsledky)
Tenzorová pole na varietách a jejich vlastnosti (definice, operace nad tenzory, mj. symetrizace, antisymetrizace, tenzorové násobení, Lieova derivace)
Afinní konexe a související otázky (tenzor torze, tenzor křivosti, paralelní přenos vektorů, geodetiky, kovariantní derivace, geometrický význam tenzoru křivosti)
Variety s metrickým polem ((pseudo)Riemannovy variety, Levi-Civitova konexe,
tenzor křivosti, Ricciho tenzor, skalární křivost, izometrie a Killingova rovnice, integrování funkcí na varietě s metrickým polem, Levi-Civitův (pseudo)tenzor, objemový element, Hodgeova dualita).
Základy teorie Lieovych grup (definice Lieovy grupy, pravo- a levoinvariantní vektorová pole a
diferenciální formy a jejich vlastnosti, Lieova algebra a jeji vztah k Lieově grupě)
- Diferenciální formy -- pokračování (orientovatelnost, integrování na varietách, Stokesova věta a její důsledky)
- Literatura
- doporučená literatura
- S. Caroll. Lecture Notes on General Relativity. URL info
- D. Krupka. Matematické základy OTR. info
- M. Fecko. Diferenciálna geometria a Lieove grupy pre fyzikov. Bratislava, Iris, 2004. info
- M. Wisser. Math 464: Notes on Differential Geometry. 2004. URL info
- C. Isham. Modern Differential Geometry for Physicists. Singapore, 1999. info
- O. Kowalski. Úvod do Riemannovy geometrie. Univerzita Karlova, Praha, 1995. info
- J. Musilová, D. Krupka. Integrální počet na Euklidových prostorech a diferencovatelných varietách. SPN, Praha, 1982. info
- M. Spivak. Calculus on Manifolds. 1965. info
- neurčeno
- John M. Lee. Introduction to Smooth Manifolds. 2006. info
- Informace učitele
- Ústní zkouška; další požadavky budou upřesněny průběžně.
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
- Statistika zápisu (léto 2012, nejnovější)
- Permalink: https://is.slu.cz/predmet/sumu/leto2012/MU03039