J 2018

Magnification effect of Kerr metric by configurations of collisionless particles in non-isotropic kinetic equilibria

CREMASCHINI, Claudio a Zdeněk STUCHLÍK

Základní údaje

Originální název

Magnification effect of Kerr metric by configurations of collisionless particles in non-isotropic kinetic equilibria

Autoři

CREMASCHINI, Claudio (380 Itálie, garant, domácí) a Zdeněk STUCHLÍK (203 Česká republika, domácí)

Vydání

European Physical Journal Plus, 2018, 2190-5444

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Německo

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/47813059:19240/18:A0000263

Organizační jednotka

Filozoficko-přírodovědecká fakulta v Opavě

UT WoS

000434466200001

Klíčová slova anglicky

covariant kinetic theory; Einstein equations; Kerr solution; collisionless N-body systems

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

GB14-37086G, projekt VaV.
Změněno: 4. 4. 2019 12:53, RNDr. Jan Hladík, Ph.D.

Anotace

V originále

A test fluid composed of relativistic collisionless neutral particles in the background of Kerr metric is expected to generate non-isotropic equilibrium configurations in which the corresponding stress-energy tensor exhibits pressure and temperature anisotropies. This arises as a consequence of the constraints placed on single-particle dynamics by Killing tensor symmetries, leading to a peculiar non-Maxwellian functional form of the kinetic distribution function describing the continuum system. Based on this outcome, in this paper the generation of Kerr-like metric by collisionless N-body systems of neutral matter orbiting in the field of a rotating black hole is reported. The result is obtained in the framework of covariant kinetic theory by solving the Einstein equations in terms of an analytical perturbative treatment whereby the gravitational field is decomposed as a prescribed background metric tensor described by the Kerr solution plus a self-field correction. The latter one is generated by the uncharged fluid at equilibrium and satisfies the linearized Einstein equations having the non-isotropic stress-energy tensor as source term. It is shown that the resulting self-metric is again of Kerr type, providing a mechanism of magnification of the background metric tensor and its qualitative features.