2018
Magnification effect of Kerr metric by configurations of collisionless particles in non-isotropic kinetic equilibria
CREMASCHINI, Claudio a Zdeněk STUCHLÍKZákladní údaje
Originální název
Magnification effect of Kerr metric by configurations of collisionless particles in non-isotropic kinetic equilibria
Autoři
CREMASCHINI, Claudio (380 Itálie, garant, domácí) a Zdeněk STUCHLÍK (203 Česká republika, domácí)
Vydání
European Physical Journal Plus, 2018, 2190-5444
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19240/18:A0000263
Organizační jednotka
Filozoficko-přírodovědecká fakulta v Opavě
UT WoS
000434466200001
Klíčová slova anglicky
covariant kinetic theory; Einstein equations; Kerr solution; collisionless N-body systems
Příznaky
Mezinárodní význam, Recenzováno
Návaznosti
GB14-37086G, projekt VaV.
Změněno: 4. 4. 2019 12:53, RNDr. Jan Hladík, Ph.D.
Anotace
V originále
A test fluid composed of relativistic collisionless neutral particles in the background of Kerr metric is expected to generate non-isotropic equilibrium configurations in which the corresponding stress-energy tensor exhibits pressure and temperature anisotropies. This arises as a consequence of the constraints placed on single-particle dynamics by Killing tensor symmetries, leading to a peculiar non-Maxwellian functional form of the kinetic distribution function describing the continuum system. Based on this outcome, in this paper the generation of Kerr-like metric by collisionless N-body systems of neutral matter orbiting in the field of a rotating black hole is reported. The result is obtained in the framework of covariant kinetic theory by solving the Einstein equations in terms of an analytical perturbative treatment whereby the gravitational field is decomposed as a prescribed background metric tensor described by the Kerr solution plus a self-field correction. The latter one is generated by the uncharged fluid at equilibrium and satisfies the linearized Einstein equations having the non-isotropic stress-energy tensor as source term. It is shown that the resulting self-metric is again of Kerr type, providing a mechanism of magnification of the background metric tensor and its qualitative features.