J 2024

Energy distribution and substructure formation in astrophysical MHD simulations

KAYANIKHOO, Fatemeh, Miljenko ČEMELJIĆ, Maciek WIELGUS a Wlodzimierz KLUŹNIAK

Základní údaje

Originální název

Energy distribution and substructure formation in astrophysical MHD simulations

Autoři

KAYANIKHOO, Fatemeh, Miljenko ČEMELJIĆ, Maciek WIELGUS a Wlodzimierz KLUŹNIAK

Vydání

Monthly Notices of the Royal Astronomical Society, US - Spojené státy americké, 2024, 0035-8711

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 4.800 v roce 2022

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

001134242100008

Klíčová slova anglicky

diffusion;magnetic reconnection;MHD;relativistic processes;methods: numerical;software: simulations

Štítky

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

GX21-06825X, projekt VaV.
Změněno: 4. 2. 2025 10:08, Mgr. Pavlína Jalůvková

Anotace

V originále

During substructure formation in magnetized astrophysical plasma, dissipation of magnetic energy facilitated by magnetic reconnection affects the system dynamics by heating and accelerating the ejected plasmoids. Numerical simulations are a crucial tool for investigating such systems. In astrophysical simulations, the energy dissipation, reconnection rate, and substructure formation critically depend on the onset of reconnection of numerical or physical origin. In this paper, we hope to assess the reliability of the state-of-the-art numerical codes, pluto and koral by quantifying and discussing the impact of dimensionality, resolution, and code accuracy on magnetic energy dissipation, reconnection rate, and substructure formation. We quantitatively compare results obtained with relativistic and non-relativistic, resistive and non-resistive, as well as two- and three-dimensional set-ups performing the Orszag-Tang test problem. We find sufficient resolution in each model, for which numerical error is negligible and the resolution does not significantly affect the magnetic energy dissipation and reconnection rate. The non-relativistic simulations show that at sufficient resolution, magnetic and kinetic energies convert to internal energy and heat the plasma. In the relativistic system, energy components undergo mutual conversion during the simulation time, which leads to a substantial increase in magnetic energy at 20 per cent and 90 per cent of the total simulation time of 10 light-crossing times - the magnetic field is amplified by a factor of 5 due to relativistic shocks. We also show that the reconnection rate in all our simulations is higher than 0.1, indicating plasmoid-mediated regime. It is shown that in koral simulations more substructures are captured than in pluto simulations.