FU:OAVENP0002 Relat. Phys. And Astrophys. I - Course Information
OAVENP0002 Relativistic Physics and Astrophysics I
Institute of physics in Opavawinter 2020
- Extent and Intensity
- 0/0/0. 8 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Jan Schee, Ph.D. (lecturer)
prof. RNDr. Zdeněk Stuchlík, CSc. (lecturer)
doc. RNDr. Jan Schee, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Jan Schee, Ph.D.
Institute of physics in Opava - Prerequisites (in Czech)
- (FAKULTA(FU) && TYP_STUDIA(N))
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Observational High Energy Astrophysics (programme FU, OBAFYVENM)
- Course objectives
- The course introduces to the students the advanced level of knowledge in relativistic physics and astrophysics including corresponding mathematical tool.
- Learning outcomes
- Passing the course a student will acquire following skills:
- mathematically correctly formulate relativistic physical problems
- solve relativistic problems
- solve Einstein equations in the framework of Cartan formulation of differential geometry - Syllabus
- The key topics of the course:
- Fundamentals of differential geometry. Manifold, coordinates, curve, vectors, tangent vector space, base vectors and 1-forms, tensors. Exterior derivative and differential forms. Connection, parallel transport, covariant derivative, geodesics.
- Connection and curvature forms, Cartan equations. Metric and metric connection. Rieman tensor and its properties, Weyl tensor.
- Tensor density, integral calculation in curved spacetime, Stokes theorem, Levi-Chivita theorem, integral form of energy and momentum conservation laws, angular momentum tensor and spin. Fermi-Walker transport and tetrade formalism.
- Lie derivative and Killing vectors; spacetime symmetries.
- Heuristic derivation of Einstein equations; derivation of Einstein equations from variation principle.
- Covariant formulation of physical laws. Relativistic electrodynamics, geometric optics, hydrodynamics, thermodynamics and kinetic teory.
- Gravitational waves. Linear theory of gravitation. Weak plane gravitational wave and its properties.
- Generation of gravitational waves in linear theory, detection of gravitational waves. Wave fronts in exact theory, „Sandwich” wave. Petrov classification.
- Gravitational collapse and black holes. Schwarzchild black hole, Reissner-Nordström black hole, Kerr black hole.
- Test particle motion in Kerr spacetime, Carter equations.
- Laws of Black hole thermodynamics, energy extraction from rotating black hole, Hawking evaporation of black holes. „No-hair” theorem.
- Kerr-Newman black hole. Penrose-Carter diagrams, Cauchy horizon.
- The key topics of the course:
- Literature
- recommended literature
- Schutz, B. A First Course in General Relativity, 2nd ed Cambridge University Press, Cambridge, 2009
- C. W. Misner, K. S. Thorne, J. A. Wheeler:. Gravitation. Freeman, San Francisco, 1973. info
- Dvořák L. Obecná teorie relativity a moderní fyzikální obraz vesmíru, skriptum SPN, Praha, 1984
- Bičák J., Ruděnko V. N. Teorie relativity a gravitační vlny, skriptum UK, Praha, 1986
- S Chandrasekhar. The Mathematical Theory of Black Holes. Oxford University Press, 1998. info
- Straumann, N. General Relativity and Reativistic Astrophysics, Springet-Verlag, Berlin, Heidelberg, New York, Tokyo 1984
- Kuchař K. Základy obecné teorie relativity. Academia, 1968. info
- Lightman A.P., Press W.H., Price R.H., Teukolsky S.A. Problem Book in Relativity and Gravitation. Princeton Univ. Press, Princeton, New Jersey, 1975. info
- Teaching methods
- Lectures. Discussing given problems. Solution of given exercises.
- Assessment methods
- oral exam, written test (75%)
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
Information on the extent and intensity of the course: 40 hodin přednášek, 20 hodin cvičení.
- Enrolment Statistics (winter 2020, recent)
- Permalink: https://is.slu.cz/course/fu/winter2020/OAVENP0002