OPF:INMNPHER Teorie her a ekonomické rozhod - Informace o předmětu
INMNPHER Teorie her a ekonomické rozhodování
Obchodně podnikatelská fakulta v Karvinéléto 2024
- Rozsah
- 2/1/0. 6 kr. Ukončení: zk.
- Vyučující
- doc. RNDr. David Bartl, Ph.D. (přednášející)
- Garance
- doc. RNDr. David Bartl, Ph.D.
Katedra informatiky a matematiky – Obchodně podnikatelská fakulta v Karviné
Kontaktní osoba: Mgr. Radmila Krkošková, Ph.D. - Rozvrh
- Po 12:15–13:50 A412
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- FAKULTA(OPF) && TYP_STUDIA(N) && FORMA(P)
- Omezení zápisu do předmětu
- Předmět je určen pouze studentům mateřských oborů.
Předmět si smí zapsat nejvýše 40 stud.
Momentální stav registrace a zápisu: zapsáno: 7/40, pouze zareg.: 0/40 - Mateřské obory/plány
- Manažerská informatika (program OPF, N_MI)
- Cíle předmětu
- Podat přehled základů teorie nekooperativních her (pojem Nashovy rovnováhy, maticové a dvojmaticové hry, smíšené rozšíření). Zmínit kooperativní hry s přenosnou výhrou. Představit Nashovu úlohu o vyjednávání (Nash Bargaining Problem) a její řešení. V rámci teorie společenské volby se zabývat funkcemi společenského výběru (social choice functions) – volební procedury – vícekriteriální rozhodování.
- Výstupy z učení
- Student bude po absolvování předmětu schopen:
- najít sedlový bod maticové hry a bod Nashovy rovnováhy dvojmaticové hry v čistých strategiích;
- najít sedlový bod ve smíšeném rozšíření maticové hry řešením úloh lineárního programování;
- najít bod Nashovy rovnováhy ve smíšeném rozšíření dvojmaticové hry typu 2×2;
- určit množinu imputací kooperativní hry s přenosnou výhrou;
- určit vítěze (vítěznou alternativu) při použití různých volebních systémů (funkcí společenského výběru);
- využít znalosti různých funkcí společenského výběru ve skupinovém rozhodování a při řešení úloh vícekriteriálního rozhodování. - Osnova
- 1. Úvod do teorie her
Předmět teorie her, historie vzniku teorie her, dělení her z hlediska teorie her. Základní formy zápisů her: zápis hry N hráčů v normální formě, zápis hry ve tvaru charakteristické funkce, zápis hry v explicitním tvaru. Základní pojmy teorie her - dominance strategií, dominance situací, dolní a horní hodnota hry, smíšené a čisté strategie, rovnovážnost podle Nashe, antagonistická hra. - 2. Antagonistické hry
Antagonistické hry - hra s nulovým součtem, maticová hra, metody pro hledání rovnovážných strategií (hledání sedlového bodu, grafická metoda, převod na úlohu lineárního programování). Řešení maticových her pomocí převodu na úlohu lineárního programování a následné řešení úloh lineárního programování pomocí nástroje Řešitel programu Excel. - 3. Neantagonistické nekooperativní hry dvou hráčů
Neantagonistické nekooperativní hry dvou hráčů - čisté a smíšené strategie u bimaticových her, hry s více rovnovážnými body, některé typické bimaticové hry (hra typu vězňova dilema, koordinační hry, antikoordinační hry). Rovnovážné strategie nekooperativních neantagonistických her dvou hráčů- postupná eliminace dominovaných strategií, hledání vzájemných nejlepších odpovědí, hledání smíšených strategií pro bimatice typu 2×2, převod na úlohu kvadratického programování. - 4. Úlohy o dohodě - kooperativní hry dvou hráčů
Úlohy o dohodě - kooperativní hry dvou hráčů - kooperativní hry dvou hráčů s přenosnou výhrou, kooperativní hry dvou hráčů s nepřenosnou výhrou, kooperativní výplatní oblast, Nashovy vyjednávací axiomy. - 5. Kooperativní hry n hráčů s přenosnou výhrou
Kooperativní hry n hráčů s přenosnou výhrou - hra ve tvaru charakteristické funkce, aplikace kooperativních her N hráčů ve veřejné volbě (preferenční profil hráče, funkce sociálního výběru, demokratické volební procedury, Condorcetova volební procedura), Arrowova věta. - 6. Aplikace kooperativních her N hráčů ve veřejné volbě
Aplikace kooperativních her N hráčů ve veřejné volbě - volební procedury, které nejsou efektivním rozšířením většinového pravidla. Efektivní volební procedury a měření vlivu koalic - volební procedury, které jsou efektivním rozšířením většinového pravidla, měření vlivu koalic u hlasování. - 7. Sekvenční hry
Sekvenční hry - převod na hru v normálním tvaru, rovnovážný bod. Ekonomické aplikace sekvenčních her, model duopolu.
- 1. Úvod do teorie her
- Literatura
- povinná literatura
- MIELCOVÁ, Elena. Teorie her pro ekonomy: Distanční studijní text. 2. vyd. Karviná: Slezská univerzita v Opavě, Obchodně podnikatelská fakulta v Karviné, 2017. info
- doporučená literatura
- VON STENGEL, Bernhard. Game Theory Basics. Cambridge University Press, 2022. ISBN 978-1-108-84330-0. info
- MASCHLER, Michael, Shmuel ZAMIR a Eilon SOLAN. Game Theory. 2nd Edition. Cambridge University Press, 2020. ISBN 978-1-108-49345-1. info
- MAŇAS, M. Teorie her a konflikty zájmů. Praha : Oeconomica, 2002. ISBN 80-245-0450-2. info
- MYERSON, R. B. Game Theory: Analysis of Conflict. Harvard University Press, 1997. ISBN 9780674341166. info
- FIALA, P. Skupinové rozhodování. VŠE v Praze, Praha, 1997. info
- Výukové metody
- přednášky a semináře (cvičení, příklady a případové studie), samostatné vypracování seminární práce (řešení vybraných příkladů vztahujících se k probírané látce)
- Metody hodnocení
- Požadavky na studenta: průběžné studium, docházka na semináře min. 70 %, seminární práce, závěrečný test.
Hodnocení: docházka na semináře, seminární práce (30 % hodnocení), písemný test (70 % hodnocení).
Hodnotící metody: samostatné vypracování seminární práce (řešení vybraných příkladů vztahujících se k probírané látce), závěrečný písemný test (příklady z probíraných okruhů). - Další komentáře
- Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
- Statistika zápisu (nejnovější)
- Permalink: https://is.slu.cz/predmet/opf/leto2024/INMNPHER