MU:MU10229 Matematická analýza I - Informace o předmětu
MU10229 Matematická analýza I
Matematický ústav v Opavězima 2010
- Rozsah
- 0/0. 7 kr. Ukončení: zk.
- Garance
- doc. RNDr. Karel Hasík, Ph.D.
Matematický ústav v Opavě - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Informatika a výpočetní technika (program FPF, B1801 Inf)
- Cíle předmětu
- Matematická analýza patří k základním oborům matematiky. V tomto předmětu se student obeznámí se základními pojmy teorie množin a topologie na nichž je po té budována teorie reálných funkcí, posloupností, číselných a funkčních řad.
- Osnova
- 1. Množiny, zobrazení, relace. Množiny, základní množinové operace, kartézský součin množin, uspořádaná dvojice. Binární relace na množině, symetrická, antisymetrická, reflexivní, tranzitivní relace, ekvivalence, rozklad množiny. Zobrazení. Uspořádané množiny, supremum, infimum.
2. Reálná čísla, funkce reálné proměnné. Axiomatická definice množiny reálných čísel, přirozená, celá, racionální iracionální čísla; algebraická vlastnosti reálných čísel; axiom spojitosti. Reálné funkce, algebraické operace s funkcemi; afinní, mocninná funkce, parita funkce, periodická funkce.
3. Základy topologie. Topologie, okolí bodu, vnitřek, vnějšek, hranice, uzávěr množiny. Kompaktní, souvislé množiny. Spojité zobrazení, homeomorfismus.
4. Topologické vlastnosti množiny reálných čísel. Přirozená topologie na množině reálných čísel. Souvislé a kompaktní množiny v přirozené topologii reálných čísel. Spojitá zobrazení množiny reálných čísel (Bolzanova Weierstrassova věta). Limita reálné funkce, věty o počítání s limitami.
5. Posloupnosti a řady. Posloupnost reálných čísel, hromadná hodnota, limes superior, limes inferior, limita posloupnosti. Posloupnost reálných funkcí její bodová a stejnoměrná konvergence. Nekonečná řada, součet řady, konvergence, kritéria konvergence řady. Absolutní konvergence, neabsolutní konvergence řady; Riemannova přerovnávací věta.
- 1. Množiny, zobrazení, relace. Množiny, základní množinové operace, kartézský součin množin, uspořádaná dvojice. Binární relace na množině, symetrická, antisymetrická, reflexivní, tranzitivní relace, ekvivalence, rozklad množiny. Zobrazení. Uspořádané množiny, supremum, infimum.
- Literatura
- doporučená literatura
- M. Krupka, M. Málek. Matematická analýza I, II. MÚ SU, Opava, 2007. URL info
- J. Holenda. Řady. SNTL-Nakladatelství technické literatury, Praha, 1990. ISBN 80-03-00505-1. info
- D. Krupka, O. Krupková. Topologie a geometrie, 1. Obecná topologie. SPN, Praha, 1989. info
- V. Jarník. Diferenciální počet I. ČSAV, Praha, 1963. info
- V. Jarník. Diferenciální počet II. ČSAV, Praha, 1963. info
- Informace učitele
- Na přednášce: není vyžadována studentova účast.
Ke zkoušce: Student musí prokázat dostatečné znalosti probrané látky, což bude pověřeno při písemnou a ústní části zkoušky.
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
- Statistika zápisu (zima 2010, nejnovější)
- Permalink: https://is.slu.cz/predmet/sumu/zima2010/MU10229