MU03049 Dynamické systémy I

Matematický ústav v Opavě
zima 2014
Rozsah
2/2/0. 6 kr. Ukončení: zk.
Vyučující
doc. RNDr. Michal Málek, Ph.D. (přednášející)
doc. RNDr. Jana Hantáková, Ph.D. (cvičící)
Garance
doc. RNDr. Michal Málek, Ph.D.
Matematický ústav v Opavě
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 6 mateřských oborů, zobrazit
Cíle předmětu
Cílem předmětu je sezmámit studenta se základními pojmy diskrétních dynamických systémů, jak na prostorech jednodimenzionálních, tak na obecných kompaktních metrických prostorech. Uvedeme základní příklady na intervalu a kružnici (rotace), zobrazení posun a kvadratický systém. Dále položíme základy limitních množin, rekurenci, topologickým promícháváním, topologické entropii a symbolické dynamice.
Osnova
  • 1. Základní definice - orbita (plná, dopředná a zpětná). Bod
    periodický, pevný, koncem periodický, koncem pevný. Fázový portrét. Brouwerova věta o pevném
    bodě. (Banachova věta o pevném bodě.) Šarkovského věta a uspořádání.
    2. Hyperbolicita - bod kritický, hyperbolický, přitahující, odpudivý.
    3. Kvadratický systém - logistická funkce. Zobrazení "Tent". Zobrazení
    iracionální rotace".
    4. Symbolická dynamika - prostor "shift space". Zobrazení
    "shift map" a jeho základní vlastnosti. "Shift" konečnéko typu.
    5. Topologická dynamika I. - minimální množina, omega limitní
    množina, nebloudivá množina, centrum, konjugace.
    6. Topologická dynamika II. - transitivní a totálně transitivní zobrazení. Mixující a
    slabě mixující zobrazení. Souvis mezi transitivitou a mixingem. Vztah mezi transitivitou a existencí
    bodu s hustou orbitou.
    7. Topologická dynamika III. - bod rekurentní, uniformně
    rekurentní. Souvis rekurence a minimality.
    8. Topologická dynamika IV. - topologická entropie.
Literatura
    doporučená literatura
  • L. S. Block, W. A. Coppel. Dynamics in one dimension. Lecture Notes in Mathematics, 1513. Springer-Ver, 1992. info
  • R. L. Devaney. An introduction to chaotic dynamical systems. Second edition, 1989. info
  • J. Smítal. On functions and functional equations. Adam Hilger, Ltd., Bristol, 1988. ISBN 0-85274-418-8. info
  • P. Walters. An introduction to ergodic theory. Graduate Texts in Mathematics, 79. Springer-Verl, 1982. info
  • H.Furstenberg. Recurrence in Ergodic Theory and Combinational Number Theory. Princeton University Press, Princeton, New Jersy, 1981. info
Informace učitele
Zápočet: zápočtový test
Zkouška: zkoušková písemka a ústní zkouška
Další komentáře
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je zařazen také v obdobích zima 2015, zima 2016, zima 2017, zima 2018, zima 2019, zima 2020, zima 2021, zima 2022, zima 2023, zima 2024.